8,108 research outputs found

    Density-temperature scaling of the fragility in a model glass-former

    Full text link
    Dynamical quantities such as the diffusion coefficient and relaxation times for some glass-formers may depend on density and temperature through a specific combination, rather than independently, allowing the representation of data over ranges of density and temperature as a function of a single scaling variable. Such a scaling, referred to as density - temperature (DT) scaling, is exact for liquids with inverse power law (IPL) interactions but has also been found to be approximately valid in many non-IPL liquids. We have analyzed the consequences of DT scaling on the density dependence of the fragility in a model glass-former. We find the density dependence of kinetic fragility to be weak, and show that it can be understood in terms of DT scaling and deviations of DT scaling at low densities. We also show that the Adam-Gibbs relation exhibits DT scaling and the scaling exponent computed from the density dependence of the activation free energy in the Adam-Gibbs relation, is consistent with the exponent values obtained by other means

    Knowing one's place: a free-energy approach to pattern regulation.

    Get PDF
    Understanding how organisms establish their form during embryogenesis and regeneration represents a major knowledge gap in biological pattern formation. It has been recently suggested that morphogenesis could be understood in terms of cellular information processing and the ability of cell groups to model shape. Here, we offer a proof of principle that self-assembly is an emergent property of cells that share a common (genetic and epigenetic) model of organismal form. This behaviour is formulated in terms of variational free-energy minimization-of the sort that has been used to explain action and perception in neuroscience. In brief, casting the minimization of thermodynamic free energy in terms of variational free energy allows one to interpret (the dynamics of) a system as inferring the causes of its inputs-and acting to resolve uncertainty about those causes. This novel perspective on the coordination of migration and differentiation of cells suggests an interpretation of genetic codes as parametrizing a generative model-predicting the signals sensed by cells in the target morphology-and epigenetic processes as the subsequent inversion of that model. This theoretical formulation may complement bottom-up strategies-that currently focus on molecular pathways-with (constructivist) top-down approaches that have proved themselves in neuroscience and cybernetics

    Two Cases of Primary Ectopic Ovarian Pregnancy

    Get PDF
    Primary ovarian pregnancy is one of the rarest varieties of ectopic pregnancies. Patients frequently present with abdominal pain and menstrual irregularities. Intrauterine devices have evolved as probable risk factors. Preoperative diagnosis is challenging but transvaginal sonography has often been helpful. A diagnostic delay may lead to rupture, secondary implantation or operative difficulties. Therefore, awareness of this rare condition is important in reducing the associated risks. Here, we report two cases of primary ovarian pregnancies presenting with acute abdominal pain. Transabdominal ultrasonography failed to hint at ovarian pregnancy in one, while transvaginal sonography aided in the correct diagnosis of the other. Both cases were confirmed by histopathological examinations and were successfully managed by surgery

    Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.

    Get PDF
    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost
    • …
    corecore